OSRAM SFH 4855 **Datasheet** ## Metal Can TO18 SFH 4855 Infrared Emitter (850 nm) ## **Applications** - Factory Automation ### **Features** - Package: hermetically sealed - ESD: 2 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2) - Wavelength 850nm - Short switching times - Spectral match with silicon photodetectors # **Ordering Information** | Туре | Radiant intensity $^{1)2)}$ $I_F = 100 \text{ mA}; t_p = 20 \text{ ms}$ I_e | Radiant intensity ¹⁾
typ.
$I_F = 100 \text{ mA}$; $t_p = 20 \text{ ms}$
I_e | Ordering Code | |--------------|---|--|---------------| | SFH 4855 | 45 280 mW/sr | 110 mW/sr | Q65111A6128 | | SFH 4855-VAW | 71 180 mW/sr | 110 mW/sr | Q65111A9675 | # **Maximum Ratings** T_A = 25 °C | Symbol | | Values | |------------------|---|--| | Ton | min. | -40 °C | | op | max. | 125 °C | | T _{sta} | min. | -40 °C | | 0.9 | max. | 125 °C | | T _j | max. | 125 °C | | I _F | min. | 1 mA | | · | max. | 100 mA | | F pulse | max. | 1 A | | | | | | V _R | max. | 5 V | | V_{ESD} | max. | 2 kV | | | T_{op} T_{stg} T_{j} I_{F} I_{Fpulse} V_{R} | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | ## **Characteristics** $I_{_{\rm F}}$ = 100 mA; $t_{_{ m p}}$ = 20 ms; $T_{_{ m A}}$ = 25 °C | Parameter | Symbol | | Values | |---|----------------------------|--------------|----------------------| | Peak wavelength | $\lambda_{\sf peak}$ | typ. | 860 nm | | Centroid wavelength | $\lambda_{ ext{centroid}}$ | typ. | 850 nm | | Spectral bandwidth at 50% I _{rel,max} (FWHM) | Δλ | typ. | 30 nm | | Half angle | φ | typ. | 8 ° | | Dimensions of active chip area | LxW | typ. | 0.3 x 0.3
mm x mm | | Distance chip surface to lens top | Н | min.
max. | 4 mm
4.8 mm | | Rise time (10% / 90%)
$I_F = 100 \text{ mA}; R_L = 50 \Omega$ | t _r | typ. | 12 ns | | Fall time (10% / 90%) $I_F = 100 \text{ mA}; R_L = 50 \Omega$ | t _f | typ. | 12 ns | | Forward voltage 4) | V_{F} | typ.
max. | 1.7 V
1.9 V | | Forward voltage ⁴⁾ I _F = 1 A; t _p = 100 µs | V _F | typ.
max. | 3.6 V
4.5 V | | Reverse current ³⁾ V _R = 5 V | I _R | typ.
max. | 0.01 μA
10 μA | | Radiant intensity ¹⁾ $I_F = 1 \text{ A}; t_p = 100 \mu\text{s}$ | l _e | typ. | 515 mW/sr | | Total radiant flux $^{5)}$ I _F = 100 mA; t _p = 20 ms | Фе | typ. | 35 mW | | Temperature coefficient of voltage | TC_{V} | typ. | -0.6 mV / K | | Temperature coefficient of brightness | TC _I | typ. | -0.3 % / K | | Temperature coefficient of wavelength | TC _λ | typ. | 0.3 nm / K | | Thermal resistance junction case real | R_{thJC} | max. | 350 K / W | | Thermal resistance junction ambient real | R_{thJA} | max. | 500 K / W | # **Brightness Groups** T_A = 25 °C | Group | Radiant intensity $^{1)2)}$ $I_F = 100 \text{ mA}$; $t_p = 20 \text{ ms}$ min. I_e | Radiant intensity $^{1)2)}$ $I_F = 100 \text{ mA}$; $t_p = 20 \text{ ms}$ max. I_e | | |-------|---|---|--| | U | 45 mW/sr | 71 mW/sr | | | V | 71 mW/sr | 112 mW/sr | | | AW | 112 mW/sr | 180 mW/sr | | | BW | 180 mW/sr | 280 mW/sr | | Only one group in one packing unit. # Relative Spectral Emission 6), 7) $I_{e,rel} = f(\lambda); I_{F} = 100 \text{ mA}; t_{p} = 20 \text{ ms}$ # Radiation Characteristics 6), 7) $I_{e,rel} = f(\phi)$ # **OSRAM** #### Forward current 6), 7) $I_{E} = f(V_{E})$; single pulse; $t_{D} = 100 \mu s$ ## Relative Radiant Intensity 6), 7) $I_e/I_e(100 \text{mA}) = f(I_F)$; single pulse; $t_p = 100 \text{ }\mu\text{s}$ ## Max. Permissible Forward Current $I_F = f(T_A); Rth_{ia} = 500 K / W$ # Permissible Pulse Handling Capability $I_F = f(t_0)$; duty cycle D = parameter; $T_A = 25^{\circ}C$ # Permissible Pulse Handling Capability $I_{_{\rm F}}$ = f ($t_{_{\rm p}}$); duty cycle D = parameter; $T_{_{\rm A}}$ = 85°C # Dimensional Drawing 8) C63062-A4266-A1-02 ## **Further Information:** **Approximate Weight:** 380.0 mg Package marking: Cathode | Pin | Description | |-----|-------------| | 1 | Cathode | | 2 | Anode | ## Recommended Solder Pad 8) E062.3010.188-01 Pad 1: cathode ## **TTW Soldering** IEC-61760-1 TTW #### Disclaimer #### Attention please! The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization. If printed or downloaded, please find the latest version on our website. #### **Packing** Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred. #### Product and functional safety devices/applications or medical devices/applications Our components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices. Our products are not qualified at module and system level for such application. In case buyer – or customer supplied by buyer – considers using our components in product safety devices/ applications or medical devices/applications, buyer and/or customer has to inform our local sales partner immediately and we and buyer and /or customer will analyze and coordinate the customer-specific request between us and buyer and/or customer. ## Glossary - 1) **Radiant intensity:** Measured at a solid angle of Ω = 0.01 sr - 2) **Brightness:** The brightness values are measured with a tolerance of ±11%. - 3) Reverse Operation: This product is intended to be operated applying a forward current within the specified range. Applying any continuous reverse bias or forward bias below the voltage range of light emission shall be avoided because it may cause migration which can change the electro-optical characteristics or damage the LED. - 4) Forward Voltage: The forward voltages are measured with a tolerance of ±0.1 V. - 5) Total radiant flux: Measured with integrating sphere. - 6) Typical Values: Due to the special conditions of the manufacturing processes of semiconductor devices, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice. - 7) **Testing temperature:** TA = 25°C (unless otherwise specified) - 8) Tolerance of Measure: Unless otherwise noted in drawing, tolerances are specified with ±0.1 and dimensions are specified in mm. 1.6 1.7 2023-01-24 2024-12-06 | Revision History | | | | |------------------|------------|--------------------------------------|--| | Version | Date | Change | | | 1.4 | 2020-02-04 | Ordering Information Characteristics | | | 1.5 | 2021-07-20 | Maximum Ratings Characteristics | | Brand New Layout **Applications** Maximum Ratings EU RoHS and China RoHS compliant product 此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准, 不含有毒有害物质或元素。 #### Published by ams-OSRAM AG Tobelbader Strasse 30, 8141 Premstaetten, Austria Phone +43 3136 500-0 ams-osram.com © All rights reserved